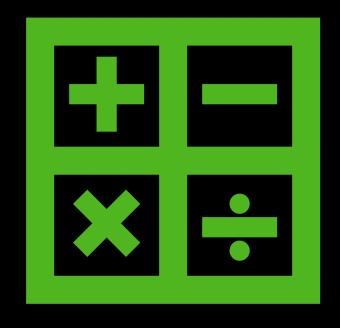

Matlab. Sesion 1

Alonso Garde Alite Elías Aoufi García Juan Picazo Lucian Andrei Negoita

FIRST STEPS


You can see the execution of your code in the same window and delete it.

You can execute your code or a part of it (Run Code or Run Section).

All the code can be saved as a pdf file.

BASICS CALCULATIONS IN MATLAB

BASICS OPERATIONS

- Addition: +
- Subtraction: -
- Multiplication: * --->careful
- Division: /
- Exponentiation: ^
- Number π: pi
- Number e: exp(1)

USUAL FUNCTIONS

```
abs(x), sqrt(x),
exp(x), log(x),
sin(x), cos(x),
tan(x), asin(x),
acos(x), atan(x)
```

Examples:

Sin(0.5) ans = 0.4794

Log2(3) ans = 1.5850

Sqrt(4) ans = 2

Compute
$$e^{-3} \cdot \sin^4\left(\frac{1}{\sqrt{2}}\right)$$
, that is, $e^{-3} \cdot \left(\sin\left(\frac{1}{\sqrt{2}}\right)\right)^4$

Hint:

exp(-x) sin(x) sqrt(x)

$$\exp(-3)*(\sin(1/\operatorname{sqrt}(2)))^4$$

ans =
$$0.0089$$

WHAT IF I NEED MORE DECIMAL NUMBERS?

• We can use vpa(x,n).

N = decimal number

vpa(exp(-3)*(sin(1/sqrt(2)))^4,20)

ans = 0.0088674633037051642237

a) 1/0, 0/0, inf/inf, inf/0

b) realmax, realmin, 10⁴0! (factorial of 10⁴0), 2⁽⁻⁵⁰⁰⁰⁾

1/0 ans = Inf0/0 ans = NaN inf/inf ans = NaNinf/0 ans = Inf

realmax ans = 1.7977e + 308realmin ans = 2.2251e-308factorial(10^40) ans = Inf2^(-5000) ans = 0

c) sqrt(-4)

sqrt(-4)
ans = 0.0000 + 2.0000i

Compute r1 = (x + y) + z, r2 = x + (y + z) in the following cases:

(i)
$$x = 1$$
, $y = -5$, $z = 6$
(ii) $x = 10^{30}$, $y = -10^{30}$, $z = 1$

Why are the answers different?

a)

```
x = 1;
y = -5;
z = 6;

% Compute r1
r1 = (x + y) + z

% Compute r2
r2 = x + (y + z)
```

b)

```
x = 10^30;
y = -10^30;
z = 1;
% Compute r1
r1 = (x + y) + z
% Compute r2
r2 = x + (y + z)
```

VECTORS IN MATLAB

- Vectors in this tool are usually defined by brackets []
 For example, x=[4,1,3] or x =[4 1 3]
- The most important commands are:
 - sum(x)sum of the coordinates
 - min(x),max(x)
 find minimum or maximum coordinates
 - length(x) total number of coordinates of the vector
 - x(n) to find a certain coordinate

Generate by using : and compute the number of coordinates of the following vectors

a)
$$a = [3, 3.01, 3.02, \dots, 4]$$

b)
$$b = [-7, -6.5, -6, ..., 6, 6.5, 7]$$

a = 3:0.01:4

c)
$$c = [4, 3, 2, ..., -1, -2]$$

5) Create a vector with all the integer numbers between -345 and 117, including both numbers. Then, find how many coordinates it has, the sum of all the components and the value of the 20th coordinate of the vector.

(Hint: you can define vectors with the pattern firstNumber:increment:lastNumber)

You can name your vector whatever you want (a, v, my_vector...)
REMEMBER:

- sum(x)
- length(x)
- x(n)

First, we define the vector

```
my_vector=-345:117

my_vector = 1×463

-345 -344 -343 -342 -341 -340 -339 -338 -337 -336 -335 -334 -333 -332 -331 -330 -329 -328 -327 ---
```

By doing this, we find how many coordinates it has

```
num_coords=length(my_vector)
num_coords = 463
```

Then, we find the sum of all the components

```
total_sum=sum(my_vector)

total_sum = -52782
```

Finally, we find the value of the 20th coordinate

```
value_20th=my_vector(20)
```

$$value_20th = -326$$

SUMMATORIES IN MATLAB

- We need the Symbolic Math Toolbox extension
- Important commands:
 - sym("number or variable") -> Creates a symbolic expression
 - When we do operations with "sym" the result will be exact and not approximate
 - syms k n -> Defines symbolic variables
 - s=symsum(k * 5^k, k, 1, n) -> Is like:

With this command we obtain the sum of the summatory

$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2}$$

```
syms k n

s_a = symsum((2*k + 1) / (k^2 * (k + 1)^2), k, 1, n)

s_a = 1 - \frac{1}{(n+1)^2}
```

$$\sum_{k=1}^{n} (2k-1)(2k+1)$$

```
syms k n

s_c = symsum((2*k - 1)*(2*k + 1), k, 1, n)

s_c = \frac{4n^3}{3} + 2n^2 - \frac{n}{3}
```

$$\sum_{k=1}^{n} (4k^2 - 1)$$

```
syms k n

s_d = symsum((4*k^2 - 1), k, 1, n)

s_d = \frac{2n(2n+1)(n+1)}{3} - n
```

$$\sum_{k=1}^{n} (2k-1)(2k+1)$$

$$\sum_{k=1}^{n} (4k^2 - 1)$$

Do you think there is a relationship between

these two?

expand(s_d)

ans =
$$\frac{4n^3}{3} + 2n^2 - \frac{n}{3}$$

YES

use expand("name of the summatory")

GRAPHS IN MATLAB

- For the function f (x) defined with syms f(x) we can:
 - Plot its graph over an interval [a,b] with:

```
fplot(f, [a,b])
```

With or without grid:

fplot(f,[a,b]), grid on

- If you want to plot more than one function on one graph:
 - Hold on
 Let us plot all the graph together
 - Hold off
 Disables this previous option

(7) Plot in the same drawing the graphs of the functions $y = e^{-3x}$ and $y = x^2$ over [0, 1].

REMEMBER:

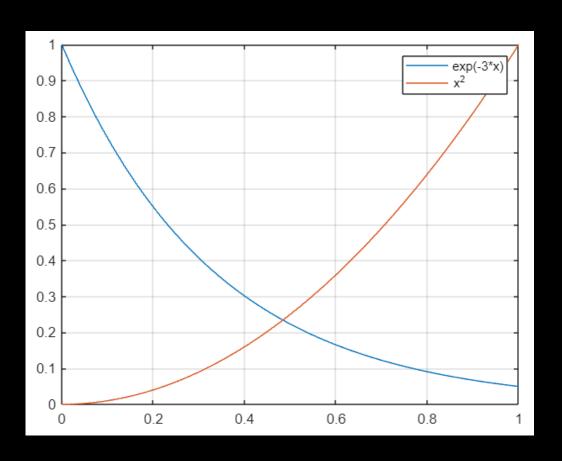
- Put syms f(x) before starting to create graphs
- e=exp(^)
- Fplot(f,[a,b])
- grid on
- hold on
- hold off

```
syms f(x)

% We define the functions

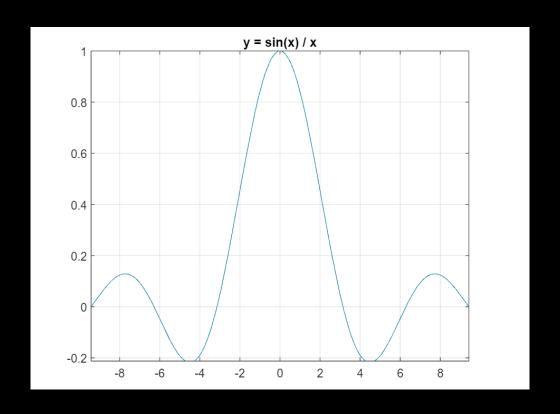
f(x) = exp(-3*x)

f(x) = e^{-3x}
```

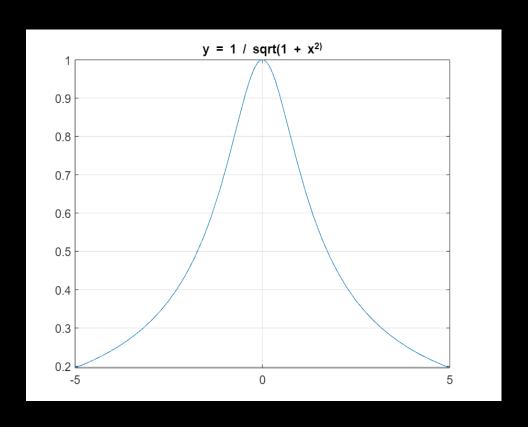

$$g(x) = x^2$$

$$g(x) = x^2$$

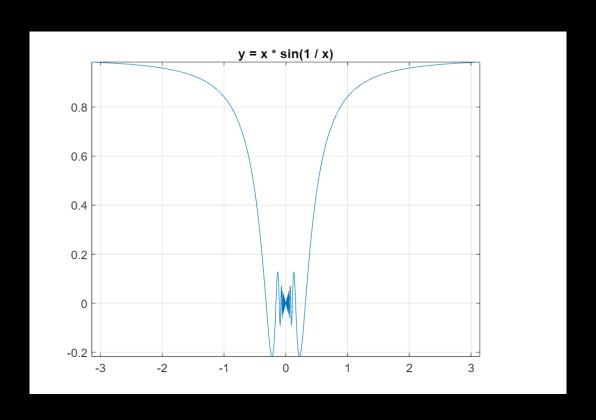
```
% We create the 1st graphic
fplot(f, [0, 1])
grid on
hold on % We mantain the 1st graphic waiting for more graphics


% We create the 2nd graphic
fplot(g, [0, 1])
hold off
legend('exp(-3*x)', 'x^2') %We add a legend, because now we have 2 functions
```

FINAL SOLUTION


(ii)
$$f(x) = \frac{\sin(x)}{x}$$
 over $[-3\pi, 3\pi]$

```
% Plot 1
syms f1(x)
f1(x) = 1 / sqrt(1 + x^2);
fplot(f1, [-5, 5]);
grid on
title('y = 1 / sqrt(1 + x^2)')
```



(i)
$$f(x) = \frac{1}{\sqrt{1+x^2}}$$
 over $[-5,5]$

```
% Plot 2
syms f2(x)
f2(x) = sin(x) / x;
fplot(f2, [-3*pi, 3*pi]);
grid on
title('y = sin(x) / x')
```


(iii)
$$f(x) = x \cdot \sin\left(\frac{1}{x}\right)$$
 over $[-\pi, \pi]$

```
% Plot 3
syms f3(x)
f3(x) = x * sin(1 / x);
fplot(f3, [-pi, pi]);
grid on
title('y = x * sin(1 / x)')
```


POLYNOMIALS IN MATLAB

- An n-degree polynomial can be defined in matlab
- Important commands:
 - pol1=[1,0,-8,-6,10] -> Defines this polynomial: $x^4 8x^2 6x + 10$
 - roots(pol1) -> Gives an approximation of all the roots of pol1
 - vpa(ans, "number of decimals") -> After roots(pol), you can put this command to make the roots have the number of decimals that you want

Define the polynomials $2x^5 + 3$ and $x^3 + 2x - 1$ and compute their approximate roots with 20 decimal digits. Are these roots real or complex?

• Define:

```
poly1 = [2, 0, 0, 0, 0, 3]
 poly1 = 1 \times 6
       2 0 0 0 0 3
poly2 = [1, 0, 2, -1]
 poly2 = 1 \times 4
```

• Compute:

```
roots(poly1)
 ans = 5 \times 1 complex
     -1.0845 + 0.0000i
     -0.3351 + 1.0314i
     -0.3351 - 1.0314i
      0.8774 + 0.6374i
      0.8774 - 0.6374i
vpa(ans, 20)
ans =
               -1.084471771197698331
  -0.33512020721998847517 + 1.0313939447357176604i
  -0.33512020721998847517 - 1.0313939447357176604 i
 0.87735609281883730759 + 0.63743651363750442052i
 0.87735609281883730759 - 0.63743651363750442052 i
```

• Compute:

```
roots(poly2)
 ans = 3 \times 1 complex
     -0.2267 + 1.4677i
     -0.2267 - 1.4677i
      0.4534 + 0.0000i
vpa(ans, 20)
ans =
  -0.22669882575820116122 + 1.4677115087102241553 i
  -0.22669882575820116122 - 1.4677115087102241553 i
               0.45339765151640387675
```

THE END

Thanks!